Top Ten Security Vulnerabilities in z/OS Security

John Hilman
Vanguard Professional Services

February 10, 2015
The Issues

- **Is your mainframe critical to your enterprise?**
 - Is it central to your Disaster Recover Plan
 - Does it host mission critical applications and data
 - What would be the immediate and long term impact of a system outage

The level of security controls for your mainframe must be sufficient for the criticality of the data and business processes hosted on it.
The Issues

• If you have a breach or a hack on your mainframe, three things could happen:
 – Your critical data could be manipulated, stolen, or compromised
 – Your operations could become compromised
 – Your reputation could become damaged
While most IT security teams tend to lump mainframe systems into the category of legacy systems unnecessary or impossible to scrutinize during regular audits, that couldn't be farther from the truth.

I see them described as legacy all the time: 'Oh, we don't need to implement this policy because it's a legacy system.' Calling a mainframe legacy is like calling Windows 2012 Server legacy because parts of the Window NT kernel are still in the code. Or it's like calling my car legacy because it's still got tires.

A website was released with a number of tools to aid with the hacking of a mainframe, including VERY SPECIFIC mainframe vulnerabilities. (ACEE zapper, USS elevated permission code, TN3270 sniffers) - https://github.com/mainframed
The Naked Mainframe

Dan Woods, 01.19.2010

"Most people think the mainframe era is past, but in everyday life the credit card processors and the grids through which electricity and telecommunications flow are largely handled by mainframes."

Black says mainframes are here to stay because the backward compatibility of the new hardware with the old logical architecture enables old software to run extremely well. "This old software has, one step at a time, one year at a time, encountered and solved all of the business and human issues involved in processing credit cards and many other tasks," Black points out. "How much money could you save not using a mainframe? A million dollars? Well, that sounds like a lot until you realize it’s the equivalent of five or six top software engineers for a year. Could five or six top software engineers over a year even understand, much less implement, solutions created over a couple of decades by hundreds, if not thousands, of engineers? In that context, the mainframe is cheap."
Pirate Bay co-founder Gottfrid Svartholm Warg was charged with hacking the IBM mainframe of Logica, a Swedish IT firm that provided tax services to the Swedish government, and the IBM mainframe of the Swedish Nordea bank, according to the Swedish public prosecutor Henrik Olin.

A large amount of data from companies and agencies was taken during the hack, according to Olin, including a large amount of personal data, such as personal identity numbers of people with protected identities.

Only one of the attempts to transfer money from eight Nordea bank accounts succeeded, according to Olin. The intruders managed to do that by hacking the mainframe that was located in Sweden.

They attempted to steal over $900K from Nordea customers accounts.
The Mainframe is still an important platform

- Security can fall short
 - Creating high-risk vulnerabilities
- Fewer security guidelines than other servers

Gartner

Research

Publication Date: 20 January 2010
ID Number: G00172909

Why Your IBM z/OS Mainframe May Not Be as Secure as You Think It Is and What You Can Do About It

Ant Allan

This research describes the state of z/OS mainframe platform security and sets out an action plan for enterprises to ensure that their mainframes are properly secure. The IBM z/OS mainframe continues to be an important platform for many enterprises, but security can fall short of the platform’s potential and CIOs’ and chief information security officers’ (CISOs’) expectations (without them realizing it).

Key Findings

- A real shortage of mature mainframe security skills makes configuration and administration errors more likely than on other enterprise server operating systems (OSs) in the same enterprises — and less likely to be found and remedied.

- Relatively lax compliance audits fail to identify mainframe control weaknesses, and lack of management attention can allow “worst practices” to continue. The risk of compromise has increased with greater mainframe connectivity.

- There are fewer z/OS-specific security guidelines than for other enterprise server OSs. Mainframe-specific compliance requirements are rare, but increasing.

- Full compliance with mainframe-specific security guidelines is difficult, and the incidence of high-risk vulnerabilities is astonishingly high.
Top Reasons for Security Vulnerabilities

• Retirement of skilled professionals – makes it difficult to assess your own security

• Lax in audits due to insufficient skill sets – not communicated to management

• Few documented guidelines available

• Full compliance with standards and regulations is difficult
Top Gartner Recommendations

- Develop and update your policies
- Audit your mainframe, remediate vulnerabilities
- Ensure your security and risk management policies are enforced
- Invest in training and education
- Evaluate intelligent administration and auditing tools
The Need to Implement Security “Best Practices”

Information Security Compliance is a top organizational initiative

- Laws, Regulations, and Standards require validation of proper implementation of IT internal controls.
- IT Internal Control failures threaten the organization’s image and can carry heavy fines and even executive management imprisonment.
- Cyber-crime activities are a serious threat and companies are expected to implement all reasonable measures to prevent successful attacks.
- Outside auditors can and are issuing sanctions that restrict core business activities based on IT security risks identified in their audits.

Bottom Line: The Information Security organization must be proactive in their efforts to implement and maintain Security “Best Practices” in their enterprises.
Origins of “Best Practices”

• Objective Sources:
 – Regulatory Compliance
 • HIPAA (1996)
 – HITECH Act 2009
 • Gramm-Leach-Bliley Act – 1999 (GLBA)
 – Financial Privacy Rule
 – Safeguards Rule
 • Sarbanes-Oxley Act of 2002 (SOX)
 – Section 404: Assessment of internal control
 • PCI-DSS
 – Payment Card Industry - Data Security Standard

https://www.pcisecuritystandards.org
 – PCI Standards & Documents
 – Documents Library
Origins of “Best Practices”

• Objective Sources:
 – Regulatory Compliance
 • DoD DISA STIGs
 – Defense Information Systems Agency
 Security Technical Implementation Guides
 – z/OS STIG adopted by Centers for Medicare
 & Medicaid Services (CMS)
 • NIST (National Institute of Standards and
 Technology)
 – co-hosts with DHS (Department of Homeland
 Security)
 – security configuration checklists on the
 National Vulnerability Database
 – Target Product: IBM OS390
The identified security issues present risk to regulatory / industry compliance standards depending on the data present within the assessed system.
Origins of “Best Practices”

• Subjective Source:
 – Vanguard Integrity Professionals
 • Professional Services Consultants with an average of 30+ years experience
 • Based on our technical understanding of z/OS and key Subsystem software
 • Related to risks and exposures identified in hundreds of Security Assessments conducted over more than 20 years
Top Ten z/OS Vulnerabilities

Scope: Vanguard Top 10 z/OS Risks Based Upon Criticality of Finding

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Vulnerability</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>73%</td>
<td>Excessive Number of User ID’s w/No Password Interval</td>
<td>SEVERE</td>
</tr>
<tr>
<td>60%</td>
<td>Inappropriate Usage of z/OS UNIX Superuser Privilege, UID = 0</td>
<td>SEVERE</td>
</tr>
<tr>
<td>52%</td>
<td>Data Set Profiles with UACC Greater than READ</td>
<td>SEVERE</td>
</tr>
<tr>
<td>40%</td>
<td>RACF Database is not Adequately Protected</td>
<td>SEVERE</td>
</tr>
<tr>
<td>39%</td>
<td>Excessive Access to APF Libraries</td>
<td>SEVERE</td>
</tr>
<tr>
<td>38%</td>
<td>General Resource Profiles in WARN Mode</td>
<td>SEVERE</td>
</tr>
<tr>
<td>33%</td>
<td>Production Batch Jobs have Excessive Resource Access</td>
<td>SEVERE</td>
</tr>
<tr>
<td>52%</td>
<td>Data Set Profiles with UACC of READ</td>
<td>HIGH</td>
</tr>
<tr>
<td>51%</td>
<td>Improper Use or Lack of UNIXPRIV Profiles</td>
<td>HIGH</td>
</tr>
<tr>
<td>51%</td>
<td>Started Task IDs are not Defined as PROTECTED IDs</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Note: Percentage is frequency of occurrence of finding. Data collected from hundreds of security assessments performed by Vanguard Integrity Professionals.
Finding

Excessive Number of User IDs with No Password Interval

Risk - Severe

User IDs with no password Interval are not required to change their passwords. Since passwords do not need to be changed periodically, people who knew a password for an ID could still access that ID even if they are no longer authorized users.

Recommended Best Practice and Remediation

Review each of the personal user profiles to determine why they require NOINTERVAL. Their passwords should adhere to the company policy regarding password changes. If the user ID is being used for started tasks or surrogate, it should be reviewed and changed to PROTECTED. If the user ID is being used for off platform process, then review controls for where the passwords are stored and consider converting to usage of digital certificates or other alternatives.
Assessment Finding #2

<table>
<thead>
<tr>
<th>Finding</th>
<th>Inappropriate Usage of z/OS UNIX Superuser Privilege UID(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk - Severe</td>
<td>User IDs with z/OS UNIX superuser authority, UID(0), have full access to all UNIX directories and files and full authority to administer z/OS UNIX.</td>
</tr>
<tr>
<td>Recommended Best Practice and Remediation</td>
<td>The assignment of UID(0) authority should be minimized by managing superuser privileges through profiles in the UNIXPRIV class. For those user IDs that do not require unrestricted superuser authority, but do require some privileged UNIX authority, UID(0) should be changed to a non-zero UID and access should be granted to one or more of the ‘BPX.qualifier’ profiles in the FACILITY class and/or access to one or more profiles in the UNIXPRIV class. For user IDs associated with started tasks, other than those for which UID(0) is appropriate, product documentation should be reviewed to determine what specific UNIX authority is required, grant only that authority, and then replace UID(0) in their respective OMVS segments with a non-zero value.</td>
</tr>
</tbody>
</table>
Assessment Finding #3

<table>
<thead>
<tr>
<th>Finding</th>
<th>Dataset Profiles with UACC Greater than READ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk - Severe</td>
<td>Data sets that are protected by a RACF profile with a UACC greater than READ allow most users with system access to read or modify these data sets. In addition, users may be able to delete any data set covered by the dataset profiles that have a UACC of ALTER.</td>
</tr>
<tr>
<td>Recommended Best Practice and Remediation</td>
<td>Review each of these profiles and determine whether the UACC is appropriate. For those profiles where the UACC is excessive, you will have to determine who really needs access before changing the UACC. To find out who is accessing these data sets, review SMF data to determine who is accessing the data sets with greater than READ access. You can then build PERMIT commands based on the review of the SMF data.</td>
</tr>
</tbody>
</table>
Assessment Finding #4

Finding

Risk - Severe

Recommended Best Practice and Remediation

RACF Database is not Adequately Protected

The RACF database contains extremely sensitive security information. No access to the RACF database is required for normal administration activities using either RACF commands or the RACF provided ISPF panels. A user who has read access to the RACF database could make a copy and then use a cracker program to find the passwords for user IDs and could obtain a list of user IDs and resources.

Review the protection for the RACF database and remove any entries granting access higher than NONE, other than the senior RACF administrators and system staff running RACF database utilities.
Assessment Finding #5

<table>
<thead>
<tr>
<th>Finding</th>
<th>Excessive Access to APF Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk - Severe</td>
<td>UPDATE or higher access to an APF library can allow an individual to create an authorized program which can bypass security controls and execute privileged instructions.</td>
</tr>
<tr>
<td>Recommended Best Practice and Remediation</td>
<td>UPDATE or higher access should be limited to senior systems support staff. Review all accesses to APF libraries and remove or change inappropriate access entries. Ensure that UPDATE and higher accesses are being logged.</td>
</tr>
</tbody>
</table>
General Resource Profiles in WARN Mode

General Resource profiles defined in WARN mode specifies that even if access authority is insufficient, RACF is to issue a warning message and allow access to the resource. RACF also records the access attempt in the SMF record. In effect, most all users have full access to any resource that is protected by a profile in WARN mode.

Monitor the SMF data on a daily basis to determine if the accesses to these resources are due to the WARN mode. The reports will indicate the usage of these resources for users who are not specifically defined to the access list. If the accesses are appropriate, grant the user/group the access required. Remove WARN mode from all general resource profiles once analysis is complete.
Assessment Finding #7

<table>
<thead>
<tr>
<th>Finding</th>
<th>Production Batch Jobs have Excessive Resource Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk - Severe</td>
<td>The user ID(s) of the production batch jobs have access to most data sets and many resources because they either have the OPERATIONS attribute or are defined on the access lists of many resource profiles. This means that most jobs that are entered into the job scheduler can accidentally or maliciously access nearly all production and/or test data sets.</td>
</tr>
<tr>
<td>Recommended Best Practice and Remediation</td>
<td>The production batch ID should only have access to the resources that are required for their particular job or jobs. Review the SMF data for each production batch ID to determine the access required. Update the appropriate access lists based upon the review of the SMF data.</td>
</tr>
</tbody>
</table>
Dataset Profiles with UACC of READ

Data sets that are protected by a RACF profile with a UACC of READ will allow most users with system access to read or copy sensitive and critical data residing in these data sets.

Review each of these profiles and determine whether the UACC is appropriate. For those profiles where the UACC is excessive, you will have to determine who really needs access before changing the UACC. To find out who is accessing these data sets, review SMF data to determine who is accessing the data sets with READ access. You can then build PERMIT commands based on the review of the SMF data.
Assessment Finding #9

Finding
Improper Use or Lack of UNIXPRIV Profiles

Risk - High

Recommended Best Practice and Remediation

The UNIXPRIV class resource rules are designed to give a limited subset of the superuser UID (0) capability. When implemented properly, UNIXPRIV profiles can significantly reduce the unnecessary requests for assignment of UID (0) to user IDs.

Review the users’ activity that are currently defined as SUPERUSERs to determine if more granular profiles may be defined in the UNIXPRIV class that will authorize their activity. Refine the access list and define more granular profiles based upon the superuser functions that the users with UID(0) need.
Assessment Finding #10

Finding

Risk - High

Recommended Best Practice and Remediation

Started Task IDs are not Defined as PROTECTED IDs

User IDs associated with started tasks should be defined as PROTECTED which will exempt them from revocation due to inactivity or excessive invalid password attempts, as well as being used to sign on to an application.

Review all started task user IDs that are not protected. Determine if the user IDs are used for any other function that might require a password. Define the started task user IDs as PROTECTED for those tasks that do not require a password.
Second step is establishing a security operations monitoring framework that effectively monitors the z/OS environment for intrusions and misuse of resources.

First step is establishing an IAM framework to properly provision and deprovision access to z/OS resources and enhance the productivity of the organization through Role Based Access models.

Third step is establishing a security policy for z/OS and ensuring the policy is enforced at all times to ensure the integrity of the z/OS platform.

Fourth step is establishing and maintaining a data security warehouse where risk analysis is performed to determine unusual data usage patterns that may be an indication of a security breach or fraud.
For More Information:

John Hilman
john.hilman@go2vanguard.com

www.go2Vanguard.com
Questions